Parametric Gradient of the Chi-Squared Statistic

In Forward Fitting (or MEM or PIXONS) one often needs the gradient of
the x? statistic with respect to the model parameters. The x? statistic for
photon count rates observed (Cops) and modeled (Cp,oq) is:
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where O'JZ- = Cimod in the case of pure Poisson statistics.
An alternative form of the x? statistic is for visibilities observed (V) and
modeled (Vi,0q) is:
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where the sum is over the index j of time bins, and the variance ajz can
either be independent of the model parameters (as in radio astronomy) or

can be proportional to the mean count rate (3|Vops|)-
1 Visibilities
For the case of visibilities, the gradient of x? is:
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It might be thought that evaluation of this expression is only possible nu-
merically, but it is straightforward in many cases to write an analytic ex-
pression for (3). This will speed up the search through parameter space,
and eliminates the insidious round-off errors commonly found in numerical
differencing schemes.

To illustrate this, we consider the particular case:

1. 092- is not a function of the parameters ay,

2. Vinoa derives from a sum of Gaussian sources.

Both of these conditions can be relaxed, and similar analytic expressions
can be found where 012- derives from Poisson statistics, and for more general



basis functions than Gaussians. For the Orthogonal Gaussian model, the
visibility is given by a sum over terms like:

2_agov2 4 )
V(J)d = qgpe —a1u;—av; eza3u3+w4vj’ (4)

for sources of width (y/a1,/a2)/m, location (a3,as)/27, and flux ay. For
multiple Gaussians, the ay parameters would take on an additional sub-
script n, and Vrgo)d would be a sum over n, but for simplicity we ignore that

subscript in the following. The derivatives of Vrggd with respect to aj are
simple:
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where the vector f = [1/ag,— , JQ,iuj-,z'ij]. Note that f has 3 real ele-
ments and 2 imaginary elements This leads to simplifications in the deriva-
tives below. Recalling our assumption that 0]2- is independent of aj, the

gradient of the numerator in (3) is:
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The above expression is real because the 3rd and 4th terms on the RHS are
the complex conjugates of the 1st and 2nd terms. If fj is real, the RHS
becomes:

RHS = fil2Vigoul® = (Vg Vit + Vi Vo) (™)
and if f is pure imaginary,
RHS = fi [V, Vo = Vaia Viod ®)

So the equation for the gradient simplifies considerably. We can get a still
simpler form by using the amplitude and phase of V3, and by using the
location parameter a3 u; + a4 v; as a phase:
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Then we find the gradient to be:
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These can be combined in the form:
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It is important to use these equations starting with a; and as very small,
because there is a spurious zero to the gradient of x? at a; = 0o or ag = co.

2 Count Rates

The model count rate profile can be written as a function of the phase at
map center P:

Crmod = aoT(1 + ¢1 cos®j,)  + higher harmonics (15)

The phase term @, is the sum of the phase at map center ®; and the phase
offset of a point source at Az, Ay relative to map center:

Qi =0+ 27 (u; Az +v; Ay) (16)

The variables (u;,v;) are the Fourier coordinates on the w,v circle for a
given subcollimator. In practice, during an iteration of the reconstruction,
®, need be computed only once, while the offset terms change during the
iteration. The fundamental amplitude ¢; for an orthogonal Gaussian source
is given by:
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where A,, is the modulated amplitude (modamp) obtained from the cali-
brated event list for a point source at map center.

For the case where the o; are independent of a;, the derivatives of the x?
function with respect to the aj are:
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For the pure P01sson statistics case, a = Cpmod, Which is a function of the
parameters ag, S0 X must be written as
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and the x? gradient assumes the form:
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There is a singularity in these equations when Cgld] = 0, and any (u,v)
points for which this is true must be treated separately.



3 Cash Statistic

In the case of very low count rates, one must use what might be called the
Cash statistic (Cash, 1979):
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where the n; are integers, representing the observed counts per bin, and the
e; are arbitrary real numbers representing the model count rates. (In terms
of previous variables, n; = Cpps and e; = Cpq-) In the limit of large n; and
€jy X%,s, Decomes the standard x? statistic, and when e; = nj, x%,,, — 0
The gradient of the Cash statistic with respect to the model e, is:
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Just as in the Poisson version above (equation 25 - 29), there is a singularity
where e, = 0, and such bins must be treated separately. Note that for low
count rates, the derivatives in equations 25 - 29 must have the coefficients
{1—- [C((]Zl/c(j) ]?} replaced by 2{1 — [C(j)/C(J) ]}, and these are equal when
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